5 years ago

Self-Aligned van der Waals Heterojunction Diodes and Transistors.

Hadass Inbar, Alex Henning, Vinod K. Sangwan, Mark C. Hersam, Jiajia Luo, Itamar Balla, Junmo Kang, Lincoln J. Lauhon, Hadallia Bergeron, Megan E. Beck

A general self-aligned fabrication scheme is reported here for a diverse class of electronic devices based on van der Waals materials and heterojunctions. In particular, self-alignment enables the fabrication of source-gated transistors in monolayer MoS2 with near-ideal current saturation characteristics and channel lengths down to 135 nm. Furthermore, self-alignment of van der Waals p-n heterojunction diodes achieves complete electrostatic control of both the p-type and n-type constituent semiconductors in a dual-gated geometry, resulting in gate-tunable mean and variance of anti-ambipolar Gaussian characteristics. Through finite-element device simulations, the operating principles of source-gated transistors and dual-gated anti-ambipolar devices are elucidated, thus providing design rules for additional devices that employ self-aligned geometries. For example, the versatility of this scheme is demonstrated via contact-doped MoS2 homojunction diodes and mixed-dimensional heterojunctions based on organic semiconductors. The scalability of this approach is also shown by fabricating self-aligned short-channel transistors with sub-diffraction channel lengths in the range of 150 nm to 800 nm using photolithography on large-area MoS2 films grown by chemical vapor deposition. Overall, this self-aligned fabrication method represents an important step towards the scalable integration of van der Waals heterojunction devices into more sophisticated circuits and systems.

Publisher URL: http://arxiv.org/abs/1802.01043

DOI: arXiv:1802.01043v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.