Reshaping of a Janus ring.
We consider reshaping of closed Janus filaments acquiring intrinsic curvature upon actuation of an active component -- a nematic elastomer elongating upon phase transition. Linear stability analysis establishes instability thresholds of circles with no imposed twist, dependent on the ratio $q$ of the intrinsic curvature to the inverse radius of the original circle. Twisted circles are proven to be absolutely unstable but the linear analysis well predicts the dependence of the looping number of the emerging configurations on the imposed twist. Modeling stable configurations by relaxing numerically the overall elastic energy detects multiple stable and metastable states with different looping numbers. The bifurcation of untwisted circles turns out to be subcritical, so that nonplanar shapes with a lower energy exist at $q$ below the critical value. The looping number of stable shapes generally increases with $q$.
Publisher URL: http://arxiv.org/abs/1802.01329
DOI: arXiv:1802.01329v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.