5 years ago

Gate-Induced Interfacial Superconductivity in 1T-SnSe2.

Yu Wang, Hongtao Yuan, Shi-Jun Liang, Kang Xu, Zhuoyu Chen, Yajun Fu, Miao Wang, Erfu Liu, Songhua Cai, Peng Wang, Xiaowei Liu, Yaojia Wang, Chenyu Wang, Chen Pan, Harold Y. Hwang, Yi Cui, Junwen Zeng, Feng Miao, Xingxu Yan

Layered metal chalcogenide materials provide a versatile platform to investigate emergent phenomena and two-dimensional (2D) superconductivity at/near the atomically thin limit. In particular, gate-induced interfacial superconductivity realized by the use of an electric-double-layer transistor (EDLT) has greatly extended the capability to electrically induce superconductivity in oxides, nitrides and transition metal chalcogenides and enable one to explore new physics, such as the Ising pairing mechanism. Exploiting gate-induced superconductivity in various materials can provide us with additional platforms to understand emergent interfacial superconductivity. Here, we report the discovery of gate-induced 2D superconductivity in layered 1T-SnSe2, a typical member of the main-group metal dichalcogenide (MDC) family, using an EDLT gating geometry. A superconducting transition temperature Tc around 3.9 K was demonstrated at the EDL interface. The 2D nature of the superconductivity therein was further confirmed based on 1) a 2D Tinkham description of the angle-dependent upper critical field, 2) the existence of a quantum creep state as well as a large ratio of the coherence length to the thickness of superconductivity. Interestingly, the in-plane approaching zero temperature was found to be 2-3 times higher than the Pauli limit, which might be related to an electric field-modulated spin-orbit interaction. Such results provide a new perspective to expand the material matrix available for gate-induced 2D superconductivity and the fundamental understanding of interfacial superconductivity.

Publisher URL: http://arxiv.org/abs/1802.00900

DOI: arXiv:1802.00900v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.