5 years ago

Physico-chemical pretreatment and enzymatic hydrolysis of cotton stalk for ethanol production by Saccharomyces cerevisiae

The aim of this work was to study the physico-chemical pretreatment and enzymatic hydrolysis of cotton stalk for ethanol production by Saccharomyces cerevisiae. Firstly, factors affecting pretreatment were screened out by Plackett-Burman design (PBD) and most significant factors were further optimized by Box-Behnken design (BBD). As shown by experimental study, most significant factors were FeCl3 concentration (FC), irradiation time (IT) and substrate concentration (SC) affecting pretreatment of cotton stalk among all studied factors. Under optimum conditions of pretreatment FC 0.15mol/l, IT 20min and SC 55g/l, the release of reducing sugar was 6.6g/l. Hydrolysis of pretreated cotton stalk was done by crude on-site produced enzymes and hydrolysate was concentrated. Ethanol production by Saccharomyces cerevisiae using concentrated cotton stalk hydrolysate was 9.8gp/l, with ethanol yield 0.37gp/gs on consumed sugars. The data indicated that microwave FeCl3 pretreated cotton stalk hydrolyses by crude unprocessed enzyme cocktail was good, and ethanol can be produced by fermentation of hydrolysate.

Publisher URL: www.sciencedirect.com/science

DOI: S0960852417312397

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.