Survival amplitude, instantaneous energy and decay rate of an unstable system: Analytical results.
We consider a model of a unstable state defined by the truncated Breit-Wigner energy density distribution function. An analytical form of the survival amplitude $a(t)$ of the state considered is found. Our attention is focused on the late time properties of $a(t)$ and on effects generated by the non--exponential behavior of this amplitude in the late time region: In 1957 Khalfin proved that this amplitude tends to zero as $t$ goes to the infinity more slowly than any exponential function of $t$. This effect can be described using a time-dependent decay rate $\gamma(t)$ and then the Khalfin result means that this $\gamma(t)$ is not a constant but at late times it tends to zero as $t$ goes to the infinity. It appears that the energy $E(t)$ of the unstable state behaves similarly: It tends to the minimal energy $E_{min}$ of the system as $t \to \infty$. Within the model considered we find two first leading time dependent elements of late time asymptotic expansions of $E(t)$ and $\gamma (t)$. We discuss also possible implications of such a late time asymptotic properties of $E(t)$ and $\gamma (t)$ and cases where these properties may manifest themselves.
Publisher URL: http://arxiv.org/abs/1802.01441
DOI: arXiv:1802.01441v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.