3 years ago

Hydrothermal carbonization of Biomass: New experimental procedures for improving the industrial Processes

This study aims to introduce new experimental methods, not yet described in the literature, to be adopted in hydrothermal carbonization processes. Silver fir was selected as model biomass in batch experiments in the range 200–300°C, up to 120min of reaction time, and at a 7:1 water to solid ratio. Simple equations were proposed for modeling the evolution of the process variables during the reaction, particularly the electrical conductivity of the liquid phase, correctly described by a simple two-step first order mechanism, regardless of the reaction temperature. At 200°C, a perfect correspondence (R2 =0.9992) exists between liquid phase electrical conductivity and solid phase carbon content. The authors propose to monitor the industrial process withdrawing from the reactor the liquid and sampling its conductivity. The benefits of a flash expansion step between the reactor and the hydrochar drying units were discussed, and experiments demonstrated the usefulness of this process innovation.

Publisher URL: www.sciencedirect.com/science

DOI: S0960852417312300

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.