5 years ago

Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)

Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate), short as P(3HB-co-4HB), was successfully produced by engineered Halomonas bluephagenesis TD01 grown in glucose and γ-butyrolactone under open non-sterile conditions. Gene orfZ encoding 4HB-CoA transferase of Clostridium kluyveri was integrated into the genome to achieve P(3HB-co-4HB) accumulation comparable to that of strains encoding orfZ on plasmids. Fed-batch cultivations conducted in 1-L and 7-L fermentors, respectively, resulted in over 70g/L cell dry weight (CDW) containing 63% P(3HB-co-12mol% 4HB) after 48h under non-sterile conditions. The processes were further scaled up in a 1000-L pilot fermentor to reach 83g/L CDW containing 61% P(3HB-co-16mol% 4HB) in 48h, with a productivity of 1.04g/L/h, again, under non-sterile conditions. The elastic P(3HB-co-16mol% 4HB) shows an elongation at break of 1022±43%. Results demonstrate that the engineered Halomonas bluephagenesis TD01 is a suitable industrial strain for large scale production under open non-sterile conditions.

Publisher URL: www.sciencedirect.com/science

DOI: S0960852417312658

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.