Circumventing Magnetic Reciprocity: a Magnetic Diode.
Lorentz reciprocity establishes a stringent relation between electromagnetic fields and their sources. For static magnetic fields a relation between magnetic sources and fields can be drawn in analogy to the Green's reciprocity principle for electrostatics. Here we theoretically and experimentally show that a linear and isotropic electrically conductive material moving with constant velocity is able to circumvent the magnetic reciprocity principle and generate infinite magnetic isolation. This result is demonstrated by measuring an extremely asymmetric magnetic coupling between two coils that are located near a moving conductor. The possibility to generate controlled unidirectional magnetic couplings breaks down one of the most deeply-established relations in classical electromagnetism, namely that mutual inductances are symmetric. This result might provide novel possibilities for applications and technologies based on magnetically coupled elements.
Publisher URL: http://arxiv.org/abs/1802.00832
DOI: arXiv:1802.00832v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.