5 years ago

Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification.

Ilias Bilionis, Rohit Tripathy

State-of-the-art computer codes for simulating real physical systems are often characterized by a vast number of input parameters. Performing uncertainty quantification (UQ) tasks with Monte Carlo (MC) methods is almost always infeasible because of the need to perform hundreds of thousands or even millions of forward model evaluations in order to obtain convergent statistics. One, thus, tries to construct a cheap-to-evaluate surrogate model to replace the forward model solver. For systems with large numbers of input parameters, one has to deal with the curse of dimensionality - the exponential increase in the volume of the input space, as the number of parameters increases linearly. In this work, we demonstrate the use of deep neural networks (DNN) to construct surrogate models for numerical simulators. We parameterize the structure of the DNN in a manner that lends the DNN surrogate the interpretation of recovering a low dimensional nonlinear manifold. The model response is a parameterized nonlinear function of the low dimensional projections of the input. We think of this low dimensional manifold as a nonlinear generalization of the notion of the active subspace. Our approach is demonstrated with a problem on uncertainty propagation in a stochastic elliptic partial differential equation (SPDE) with uncertain diffusion coefficient. We deviate from traditional formulations of the SPDE problem by not imposing a specific covariance structure on the random diffusion coefficient. Instead, we attempt to solve a more challenging problem of learning a map between an arbitrary snapshot of the diffusion field and the response.

Publisher URL: http://arxiv.org/abs/1802.00850

DOI: arXiv:1802.00850v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.