Deuterated silicon nitride photonic devices for broadband optical frequency comb generation.
We report and characterize low-temperature, plasma-deposited deuterated silicon nitride thin films for nonlinear integrated photonics. With a peak processing temperature less than 300$^\circ$C, it is back-end compatible with pre-processed CMOS substrates. We achieve microresonators with a quality factor of up to $1.6\times 10^6 $ at 1552 nm, and %CONTENT%gt;1.2\times 10^6$ throughout $\lambda$ = 1510 -- 1600 nm, without annealing or stress management. We then demonstrate the immediate utility of this platform in nonlinear photonics by generating a 1 THz free spectral range, 900-nm-bandwidth modulation-instability microresonator Kerr comb and octave-spanning, supercontinuum-broadened spectra.
Publisher URL: http://arxiv.org/abs/1802.01006
DOI: arXiv:1802.01006v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.