3 years ago

Microalgal-bacterial aggregates: Applications and perspectives for wastewater treatment

Microalgal-bacterial aggregates: Applications and perspectives for wastewater treatment
Research on wastewater treatment by means of microalgal-bacterial processes has become a hot topic worldwide during the last two decades. Owing to the lower energy demand for oxygenation, the enhanced nutrient removal and the potential for resource recovery, microalgal-based technologies are nowadays considered as a good alternative to conventional activated sludge treatments in many instances. Nevertheless, biomass harvesting still constitutes one of the major challenges of microalgal-bacterial systems for wastewater treatment, which is hindered by the poor settleability of microalgal biomass. In this review, the use of microalgal-bacterial aggregates (MABAs) to overcome harvesting issues and to enhance resource recovery is presented. The fundamentals of MABAs-based technologies, the operational strategies and factors affecting the formation of MABAs, the microbiology and the methanogenic potential of the aggregates are addressed and critically discussed. The most recent findings and the challenges facing this technology towards its consolidation are also presented.

Publisher URL: www.sciencedirect.com/science

DOI: S0734975017300794

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.