Suppressed Far-UV Stellar Activity and Low Planetary Mass Loss in the WASP-18 System.
WASP-18 hosts a massive, very close-in Jupiter-like planet. Despite its young age (%CONTENT%lt;$1 Gyr), the star presents an anomalously low stellar activity level: the measured logR'$_{\rm HK}$ activity parameter lies slightly below the basal level; there is no significant time-variability in the logR'$_{\rm HK}$ value; there is no detection of the star in the X-rays. We present results of far-UV observations of WASP-18 obtained with COS on board of Hubble Space Telescope aimed at explaining this anomaly. From the star's spectral energy distribution, we infer the extinction (E(B-V) $\approx$ 0.01 mag) and then the interstellar medium (ISM) column density for a number of ions, concluding that ISM absorption is not the origin of the anomaly. We measure the flux of the four stellar emission features detected in the COS spectrum (CII, CIII, CIV, SiIV). Comparing the CII/CIV flux ratio measured for WASP-18 with that derived from spectra of nearby stars with known age, we see that the far-UV spectrum of WASP-18 resembles that of old (%CONTENT%gt;$5 Gyr), inactive stars, in stark contrast with its young age. We conclude that WASP-18 has an intrinsically low activity level, possibly caused by star-planet tidal interaction, as suggested by previous studies. Re-scaling the solar irradiance reference spectrum to match the flux of the SiIV line, yields an XUV integrated flux at the planet orbit of 10.2 erg cm$^{-2}$ s$^{-1}$. We employ the rescaled XUV solar fluxes to models of the planetary upper atmosphere, deriving an extremely low thermal mass-loss rate of 10$^{-20}$ $M_{\rm J}$ Gyr$^{-1}$. For such high-mass planets, thermal escape is not energy limited, but driven by Jeans escape.
Publisher URL: http://arxiv.org/abs/1802.00999
DOI: arXiv:1802.00999v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.