5 years ago

An appetizer to modern developments on the Kardar-Parisi-Zhang universality class.

Kazumasa A. Takeuchi

The Kardar-Parisi-Zhang (KPZ) universality class describes a broad range of non-equilibrium fluctuations, including those of growing interfaces, directed polymers and particle transport, to name but a few. Since the year 2000, our understanding of the one-dimensional KPZ class has been completely renewed by mathematical physics approaches based on exact solutions. Mathematical physics has played a central role since then, leading to a myriad of new developments, but their implications are clearly not limited to mathematics -- as a matter of fact, it can also be studied experimentally. The aim of these lecture notes is to provide an introduction to the field that is accessible to non-specialists, reviewing basic properties of the KPZ class and highlighting main physical outcomes of mathematical developments since the year 2000. It is written in a brief and self-contained manner, with emphasis put on physical intuitions and implications, while only a small (and mostly not the latest) fraction of mathematical developments could be covered. Liquid-crystal experiments by the author and coworkers are also reviewed.

Publisher URL: http://arxiv.org/abs/1708.06060

DOI: arXiv:1708.06060v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.