5 years ago

Using impure many-body particle states to generate exact $\mathcal{PT}$-symmetry in a time-dependent four-well system.

Günter Wunner, Dennis Dast, Jörg Main, Daniel Dizdarevic, Holger Cartarius, Tina Mathea

Bose-Einstein condensates with balanced gain and loss in a double-well potential have been shown to exhibit PT-symmetric states. As proposed by Kreibich et al [Phys. Rev. A 87, 051601(R) (2013)], in the mean-field limit the dynamical behaviour of this system, especially that of the PT-symmetric states, can be simulated by embedding it into a four-well system with time-dependent parameters. In this paper we go beyond the mean-field approximation and investigate many-body effects in this system, which are in lowest order described by the single-particle density matrix. The conditions for PT symmetry in the single-particle density matrix cannot be completely fulfilled by using pure initial states. Here we show that it is mathematically possible to achieve exact PT symmetry in the four-well many-body system in the sense of the dynamical behaviour of the single-particle density matrix. In contrast to previous work, for this purpose, we use impure initial states fulfilling certain constraints and use them to calculate the dynamics.

Publisher URL: http://arxiv.org/abs/1802.01323

DOI: arXiv:1802.01323v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.