5 years ago

Hybrid Nodal Loop Metal: Unconventional Magnetoresponse and Material Realization.

Zhi-Ming Yu, Hui Ying Yang, Xian-Lei Sheng, Xiaoming Zhang, Yunhao Lu, Shengyuan A. Yang

A nodal loop is formed by band crossing along a one-dimensional closed manifold, with each point on the loop a linear nodal point in the transverse dimensions and can be classified as type-I or type-II depending on the band dispersion. Here, we propose a class of nodal loops composed of both type-I and type-II points, which are hence termed as hybrid nodal loops. Based on firstprinciples calculations, we predict the realization of such loops in the existing electride material Ca2As. For a hybrid loop, the Fermi surface consists of coexisting electron and hole pockets that touch at isolated points for an extended range of Fermi energies, without the need for fine-tuning. This leads to unconventional magnetic responses, including the zero-field magnetic breakdown and the momentum space Klein tunneling observable in the magnetic quantum oscillations, as well as the peculiar anisotropy in the cyclotron resonance.

Publisher URL: http://arxiv.org/abs/1802.00905

DOI: arXiv:1802.00905v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.