3 years ago

Pathway optimization and key enzyme evolution of N-acetylneuraminate biosynthesis using an in vivo aptazyme-based biosensor

N-acetylneuraminate (NeuAc) biosynthesis has drawn much attention owing to its wide applications in many aspects. Previously, we engineered for the first time an artificial NeuAc biosynthetic pathway in Escherichia coli using glucose as sole substrate. However, rigorous requirements for the flux and cofactor balance make subsequent strain improvement rather difficult. In this study, an in vivo NeuAc biosensor was designed and applied for genetic screening the mutant library of NeuAc producer. Its NeuAc responsive manner was demonstrated using sfgfp as a reporter and a Ni2+-based selection system was developed to couple the cell growth with in vivo NeuAc concentration. Employing this selection system, the NeuAc biosynthesis pathway was optimized and the key enzyme NeuAc synthase was evolved, which improved the titer by 34% and 23%, respectively. The final strain produced up to 8.31g/L NeuAc in minimal medium using glucose as sole carbon source. This work demonstrated the effectiveness of NeuAc biosensor in genetic screening and great potential in metabolic engineering of other organisms.

Publisher URL: www.sciencedirect.com/science

DOI: S1096717617301817

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.