3 years ago

Releasing the potential power of terpene synthases by a robust precursor supply platform

Terpenoids represent the largest family of natural products. Their structural diversity is largely due to variable skeletons generated by terpene synthases. However, terpene skeletons found in nature are much more than those generated from known terpene synthases. Most promiscuous terpene synthases (i.e. those that can generate more than one product) have not been comprehensively characterised. Here, we first demonstrated that the promiscuous terpene synthases can produce more variable terpenoids in vivo by converting precursor polyisoprenoid diphosphates of different lengths (C10, C15, C20, C25). To release the synthetic potential of these enzymes, we integrated the engineered MVA pathway, combinatorial biosynthesis, and point mutagenesis to depict the comprehensive product profiles. In total, eight new terpenoids were characterised by NMR and three new skeletons were revealed. This work highlights the key role of metabolic engineering for natural product discovery.

Publisher URL: www.sciencedirect.com/science

DOI: S1096717617300472

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.