5 years ago

Comparative study of the effects of three tunneling methods on ground movements in stiff clay

This paper interprets ground movements induced by tunnel construction, by comparing monitoring data with analytical and numerical predictions based on an assumed set of deformation parameters at the cavity boundary. By minimizing differences between the computed and measured ground movements, optimal cavity deformation parameters can then be used to characterize the performance of the tunneling process. We compare the performance of three tunnel construction methods in stiff clay: (i) closed-face excavation using an Earth Pressure Balance (EPB) tunnel boring machine; (ii) open-face shield excavation; and (iii) sequential construction using the New Austrian Tunneling Method (NATM). The measured data were obtained from three projects in London each involving different tunnel size and depth, but all excavated through deep units of stiff London clay. The measured performance in each case is evaluated using analytical solutions, that assume linear elastic properties for an elastic half-space, and numerical simulations that use an effective stress soil model, MIT-S1, with input parameters calibrated to elemental behavior of the London Clay. Although the numerical analyses achieve better agreement with the measured data, the analytical solutions perform well and could be used in future studies. The results indicate that the closed-face tunneling provided the best control of volume loss, while open-face shield excavation caused the largest ovalization of the tunnel cavity. The proposed methodology offers a practical framework for cataloging and comparing tunnel performance in future projects.

Publisher URL: www.sciencedirect.com/science

DOI: S0886779817302353

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.