3 years ago

Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme

Ginsenoside Rh2 is a potential anticancer drug isolated from medicinal plant ginseng. Fermentative production of ginsenoside Rh2 in yeast has recently been investigated as an alternative strategy compared to extraction from plants. However, the titer was quite low due to low catalytic capability of the key ginseng glycosyltransferase in microorganisms. Herein, we have demonstrated high-level production of ginsenoside Rh2 in Saccharomyces cerevisiae via repurposing an inherently promiscuous glycosyltransferase, UGT51. The semi-rationally designed UGT51 presented an ~1800-fold enhanced catalytic efficiency (k cat /K m ) for converting protopanaxadiol to ginsenoside Rh2 in vitro. Introducing the mutant glycosyltransferase gene into yeast increased Rh2 production from 0.0032 to 0.39mg/g dry cell weight (DCW). Further metabolic engineering, including preventing Rh2 degradation and increasing UDP-glucose precursor supply, increased Rh2 production to 2.90mg/g DCW, which was more than 900-fold higher than the starting strain. Finally, fed-batch fermentation in a 5-L bioreactor led to production of ~300mg/L Rh2, which was the highest titer reported.

Publisher URL: www.sciencedirect.com/science

DOI: S1096717617300666

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.