5 years ago

CRISPR EnAbled Trackable genome Engineering for isopropanol production in Escherichia coli

Isopropanol is an important target molecule for sustainable production of fuels and chemicals. Increases in DNA synthesis and synthetic biology capabilities have resulted in the development of a range of new strategies for the more rapid design, construction, and testing of production strains. Here, we report on the use of such capabilities to construct and test 903 different variants of the isopropanol production pathway in Escherichia coli. We first constructed variants to explore the effect of codon optimization, copy number, and translation initiation rates on isopropanol production. The best strain (PA06) produced isopropanol at titers of 17.5g/L, with a yield of 0.62 (mol/mol), and maximum productivity of 0.40g/L/h. We next integrated the isopropanol synthetic pathway into the genome and then used the CRISPR EnAbled Trackable genome Engineering (CREATE) strategy to generate an additional 640 individual RBS library variants for further evaluation. After testing each of these variants, we constructed a combinatorial library containing 256 total variants from four different RBS levels for each gene. The best producing variant, PA14, produced isopropanol at titers of 7.1g/L at 24h, with a yield of 0.75 (mol/mol), and maximum productivity of 0.62g/L/h (which was 0.22g/L/h above the parent strain PA07). We demonstrate the ability to rapidly construct and test close to ~1000 designer strains and identify superior performers.

Publisher URL: www.sciencedirect.com/science

DOI: S1096717616301550

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.