3 years ago

Molecular mechanisms underlying protection against H9N2 influenza virus challenge in mice by recombinant Lactobacillus plantarum with surface displayed HA2-LTB

It has been considered that the Avian influenza virus (AIV) causes severe threats to poultry industry. In this study, we constructed a series of recombinant Lactobacillus plantarum (L. plantarum) with surface displayed hemagglutinin subunit 2 (HA2) alone or together with heat-labile toxin B subunit (LTB) from enterotoxigenic Escherichia coli. Balb/c mice were used as model to evaluate the protective effects of recombinant L. plantarum strains against H9N2 subtype challenge. The results showed that the presence of LTB significantly increased the percentages of CD3+CD4+IL-4+, CD3+CD4+IFN-γ+ and CD3+CD4+IL-17+ T cells, as well as CD3+CD8+IFN-γ+ T cells in spleen and MLNs determined by Fluorescence-Activated Cell Sorting assay. Similar increased production of serum IFN-γ was also confirmed by enzyme linked immunosorbent assay (ELISA). The L. plantarum with surface displayed HA2-LTB also dramatically increased the percentages of B220+ IgA+ B cells in peyer patch, in consistent with elevated production of mucosal SIgA antibody determined by ELISA. Finally, the orally administrated HA2-LTB expressing strain efficiently protected mice against H9N2 subtype AIV challenge shown by increased survival percentages, body weight gains and decreased lung lesions in histopathologic analysis. In conclusion, this study provides more detail mechanisms underlying the adjuvant effects of LTB on heterologous antigen produced in recombinant lactic acid bacteria.

Publisher URL: www.sciencedirect.com/science

DOI: S0168165617315973

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.