3 years ago

Transcriptomic changes in CHO cells after adaptation to suspension growth in protein-free medium analysed by a species-specific microarray

Chinese Hamster Ovary (CHO) cells are the preferred cell line for production of biopharmaceuticals. These cells are capable to grow without serum supplementation, but drastic changes in their phenotype occur during adaptation to protein-free growth, which typically include the change to a suspension phenotype with reduced growth rate. A possible approach to understand this transformation, with the intention to counteract the reduction in growth by targeted supplementation of protein-free media, is gene expression profiling. The increasing availability of genome-scale data for CHO now facilitates quests for a better understanding of metabolic pathways and gene networks. So far, systematic large-scale expression profiling in CHO cells by microarray was limited due to lack of publicly available array designs and limitations of alternative approaches. Based on the recent release of CHO and Chinese Hamster genome sequences, including an annotated RefSeq genome, we have constructed a publicly available microarray design for effective genome-scale expression profiling. The design employed microarray probes optimized for uniformity, sensitivity, and specificity, with probe properties computed using the latest thermodynamic models. We validated the platform in an analysis of gene expression changes in response to serum-free adaptation. The observed effects on the lipid metabolism as well as on nucleotide synthesis were used to successfully select media supplements that were able to increase growth rate.

Publisher URL: www.sciencedirect.com/science

DOI: S0168165617301104

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.