5 years ago

Systems biology of robustness and flexibility: Lactobacillus buchneri—A show case

Lactobacillus buchneri is a lactic acid bacterium that naturally inhabits very different ecological niches and plays an ambivalent role in many food and feed fermentation processes, where it can act as useful starter or as spoilage organism. Due to its vicinity to important biotechnological processes like silage making, ethanol production, baking, fermenting vegetables or brewing, L. buchneri was subject of extensive research and is now a quite well studied microorganism. Recently, next generation ‘OMICS’-methods were applied to investigate L. buchneri in more detail on a systems biology level. These studies give insights into genetic equipment of L. buchneri, its metabolism. interaction with microbial consortia, and gene regulation under different growth conditions. The present review article is a compilation of the available results and is an attempt that aims to understand how L. buchneri, equipped with a relatively small set of genes, can adapt to so many highly distinct ecological niches, resist the associated, sometimes tough environmental conditions and prevail against other members of the microbial consortia present in the same niche.

Publisher URL: www.sciencedirect.com/science

DOI: S016816561730024X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.