5 years ago

Multiple-target Tracking on Mixed Images with Reflections and Occlusions

Measurements arose from strong reflections combined with occlusions significantly degrade accuracy of multi-target tracking. Few methods have addressed this problem, and thus this paper proposes a robust multi-target tracker for mixed images with occlusions. For multi-cue integration using co-inference tracking, moving object detection significantly enhances motion cue based correction in the presence of reflections. Target templates are represented by sets of color and spatiality histograms. Joint likelihoods referring to both the target motion trajectory and appearance model of the co-inference fused state are computed. Thus each optimized particle weight with the criteria of maximum joint likelihood is more reliable in the face of reflections and inter-object occlusions. State estimation is achieved with the sample-based data association probability and occlusion confidence indicator. Experimental results show that the proposed tracker outperforms the-state-of-the-art multi-target trackers on images with strong reflections and inter-object occlusions.

Publisher URL: www.sciencedirect.com/science

DOI: S1047320318300270

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.