5 years ago

Rate-Splitting Multiple Access for Downlink Communication Systems: Bridging, Generalizing and Outperforming SDMA and NOMA.

Yijie Mao, Victor O.K. Li, Bruno Clerckx

Space-Division Multiple Access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user interference as noise. Non-Orthogonal Multiple Access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users. In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of Quality-of-Service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from SDMA and NOMA. We develop a novel multiple access framework, called Rate-Splitting Multiple Access (RSMA). RSMA is a more general and powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to partially decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise, and provide room for rate and QoS enhancements, and complexity reduction. The three multiple access schemes are compared and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths and qualities of Channel State Information at the Transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers).

Publisher URL: http://arxiv.org/abs/1710.11018

DOI: arXiv:1710.11018v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.