5 years ago

Characterization of a novel CYP51 from Rhodococcus triatomae and its NADH-ferredoxin reductase-coupled application in lanosterol 14α-demethylation

Characterization of a novel CYP51 from Rhodococcus triatomae and its NADH-ferredoxin reductase-coupled application in lanosterol 14α-demethylation
Reconstitution of a selective demethylation system for lanosterol is desperately needed for more efficient synthesis of steroidal drugs. Sterol 14α-demethylase cytochrome P450 (CYP51) has been confirmed to catalyze sterol 14α-demethylation, an essential reaction in sterol biosynthesis. Herein, a putative CYP51 gene (RtCYP51) was mined from the complete genome sequence of Rhodococcus triatomae BKS 15-14. Its amino acid sequence showed 25–68% identity to other sterol 14α-demethylases, and contained a novel alanine-rich sequence at the C-terminus. Heterologous expression of the RtCYP51 gene in Escherichia coli (E. coli) yielded a ∼54kDa recombination protein that exhibited a typical reduced CO-difference spectrum and a dissociation constant (K d) of 2.93μM for lanosterol. Furthermore, three exogenous electron donor systems, including Fdx-FdR (Acinetobacter sp.OC4 ferredoxin and ferredoxin reductase), Fld-FdR2 (E. coli flavodoxin and flavodoxin reductase) and NfFdR (Nocardia farcinica iron-sulfur containing NADPH-P450 reductase) were selected for coupling the electron-transfer from the coenzyme to RtCYP51. Fdx-FdR was found to be the most efficient electron donor and was also confirmed to support the lanosterol demethylation activity of RtCYP51 in vitro. Under the optimum molar ratio of RtCYP51/FdR/Fdx (1:2:10), RtCYP51 exhibited a relatively high turnover number of 0.63min−1 (nmol metabolized lanosterol/min/nmol RtCYP51), compared with known bacterial CYP51s.

Publisher URL: www.sciencedirect.com/science

DOI: S1359511317307985

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.