5 years ago

Surface modification of polyamide 6.6 fibers by enzymatic hydrolysis

Surface modification of polyamide 6.6 fibers by enzymatic hydrolysis
Synthetic fibers are used extensively in textile industry, however, their high hydrophobicity is a drawback that needs to be considered. The decrease of hydrophobicity can be achieved via a “green” root using enzymes as biocatalysts. In this study, the enzymatic surface modification of polyamide (PA) 6.6 fabric was studied with the use of the commercial protease Alcalase 2.4L at optimal conditions. The modified fabrics were studied via dyeing parameters K/S and ΔΕ values. For treatment at 40–60°C and pH 8 ΔE was found to be approximately 14 and K/S was 1.24-fold increased. Additionally, the enzymatic surface modification of PA textile was justified using different spectroscopy techniques, such as FTIR-ATR and XPS. FTIR-ATR indicated alterations of CO and NH band intensities, while via XPS, there proved to be differences in relative intensities of carbon component peaks. Finally, thermogravimetric and mechanical tests were also conducted to prove the non-degradation of the properties of the bulk material. In conclusion, the investigated enzymatic process increased the hydrophilicity with 2.7-fold increased water absorbency and 1.24-fold enhanced color strength of PA textiles, while maintaining the thermal and mechanical properties of the bulk synthetic material.

Publisher URL: www.sciencedirect.com/science

DOI: S1359511316302008

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.