5 years ago

Microbial community dynamics in aerated biological fluidized bed (ABFB) with continuously increased p-nitrophenol loads

Microbial community dynamics in aerated biological fluidized bed (ABFB) with continuously increased p-nitrophenol loads
Biodegradability of PNP has been reported widely in recent years, but the community composition of PNP-degrading microorganisms was still unclear today. In this paper, the biodegradation process with continuously PNP loading from 0 to 6.50kgm−3 d−1 in 58days in an aerobic biological fluidized bed (ABFB) reactor has been investigated. The results show that COD and PNP removal stabilized at 95% and 99% during the operation period with a maximum PNP concentration of 1250mg/L. The high concentration of PNP in substrate led to a significant increase in extracellular polymeric substances (EPS) component of biomass and obvious morphological changes of microbial colonies during the degradation process. In addition, high-throughput sequencing was employed to reveal the highly diverse bacterial and fungal populations in the reactor. At the same time, genera Sphingobium, Penicillum and Debaryomyces belonging to phyla Proteobacteria and Ascomycota were identified to be the dominant species in high concentration PNP degradation process. This work investigated the tolerable degree of aerobic microbes to PNP toxicity as well as the characteristics of microbial communities at different PNP concentration levels. It might add some new insights into bacterial and fungal communities in high p-nitrophenol concentration degradation processes.

Publisher URL: www.sciencedirect.com/science

DOI: S1359511317306633

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.