Wave dynamics on networks: method and application to the sine-Gordon equation.
We consider a scalar Hamiltonian nonlinear wave equation formulated on networks; this is a non standard problem because these domains are not locally homeomorphic to any subset of the Euclidean space. More precisely, we assume each edge to be a 1D uniform line with end points identified with graph vertices. The interface conditions at these vertices are introduced and justified using conservation laws and an homothetic argument. We present a detailed methodology based on a symplectic finite difference scheme together with a special treatment at the junctions to solve the problem and apply it to the sine-Gordon equation. Numerical results on a simple graph containing four loops show the performance of the scheme for kinks and breathers initial conditions.
Publisher URL: http://arxiv.org/abs/1506.02405
DOI: arXiv:1506.02405v3
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.