Estimating regional ground-level PM2.5 directly from satellite top-of-atmosphere reflectance using deep learning.
Almost all remote sensing atmospheric PM2.5 estimation methods need satellite aerosol optical depth (AOD) products, which are often retrieved from top-of-atmosphere (TOA) reflectance via an atmospheric radiative transfer model. Then, is it possible to estimate ground-level PM2.5 directly from satellite TOA reflectance without a physical model? In this study, this challenging work are achieved based on a machine learning model. Specifically, we establish the relationship between PM2.5, satellite TOA reflectance, observation angles, and meteorological factors in a deep learning architecture (denoted as Ref-PM modeling). Taking the Wuhan Urban Agglomeration (WUA) as a case study, the results demonstrate that compared with the AOD-PM modeling, the Ref-PM modeling obtains a competitive performance, with out-of-sample cross-validated R2 and RMSE values of 0.87 and 9.89 ug/m3 respectively. Also, the TOA-reflectance-derived PM2.5 have a finer resolution and larger spatial coverage than the AOD-derived PM2.5. This work updates the traditional cognition of remote sensing PM2.5 estimation and has the potential to promote the application in atmospheric environmental monitoring.
Publisher URL: http://arxiv.org/abs/1709.05912
DOI: arXiv:1709.05912v2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.