5 years ago

Modal Noise Mitigation through Fiber Agitation for Fiber-fed Radial Velocity Spectrographs.

Debra A. Fischer, Dominic Eggerman, Colby A. Jurgenson, Tyler M. McCracken, Ryan R. Petersburg, Andrew E. Szymkowiak, David Sawyer

Optical fiber modal noise is a limiting factor for high precision spectroscopy signal-to-noise in the near-infrared and visible. Unabated, especially when using highly coherent light sources for wavelength calibration, modal noise can induce radial velocity (RV) errors that hinder the discovery of low-mass (and potentially Earth-like) planets. Previous research in this field has found sufficient modal noise mitigation through the use of an integrating sphere, but this requires extremely bright light sources, a luxury not necessarily afforded by the next generation of high-resolution optical spectrographs. Otherwise, mechanical agitation, which "mixes" the fiber's modal patterns and allows the noise to be averaged over minutes-long exposures, provides some noise reduction but the exact mechanism behind improvement in signal-to-noise and RV drift has not been fully explored or optimized by the community. Therefore, we have filled out the parameter space of modal noise agitation techniques in order to better understand agitation's contribution to mitigating modal noise and to discover a better method for agitating fibers. We find that modal noise is best suppressed by the quasi-chaotic motion of two high-amplitude agitators oscillating with varying phase for fibers with large core diameters and low azimuthal symmetry. This work has subsequently influenced the design of a fiber agitator, to be installed with the EXtreme PREcision Spectrograph, that we estimate will reduce modal-noise-induced RV error to less than 3.2 cm/s.

Publisher URL: http://arxiv.org/abs/1802.01642

DOI: arXiv:1802.01642v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.