5 years ago

High Kinetic Inductance NbN Nanowire Superinductors.

Jonathan Burnett, Jonas Bylander, David Niepce

We demonstrate that a high kinetic inductance disordered superconductor can realize a low microwave loss, non-dissipative circuit element with an impedance greater than the quantum resistance ($R_Q = h/4e^2 \simeq 6.5k\Omega$). This element, known as a superinductor, can produce a quantum circuit where charge fluctuations are suppressed. The superinductor consists of a 40 nm wide niobium nitride nanowire and exhibits a single photon quality factor of $2.5 \times 10^4$. Furthermore, by examining loss rates, we demonstrate that the dissipation of our nanowire devices can be fully understood in the framework of two-level system loss.

Publisher URL: http://arxiv.org/abs/1802.01723

DOI: arXiv:1802.01723v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.