5 years ago

Molecular interaction of triclosan with superoxide dismutase (SOD) reveals a potentially toxic mechanism of the antimicrobial agent

Molecular interaction of triclosan with superoxide dismutase (SOD) reveals a potentially toxic mechanism of the antimicrobial agent
In this article, the interaction mechanism between the superoxide dismutase (SOD) and the triclosan (TCS), a kind of antimicrobial agent which is of widely application with potential effects both on environment and human health, was explored through a series of spectroscopic methods, animal experiment and the molecular docking simulation. The negative free energy change ∆G, enthalpy change (∆H = 162.21 kJmol−1) and entropy change (∆S = 615 Jmol−1K−1) demonstrated that TCS could combine with SOD spontaneously through hydrophobic interaction to form a complex. The binding constants of K a293 and K a313 were 1.706 × 103 and 1.2 × 105 Lmol−1, respectively. Furthermore, the interaction could also influence the skeleton structure and secondary contents of SOD. The molecular docking analysis revealed the TCS located between two subunits of SOD, and there was a hydrogen bond between TCS and the residue Asn51 of SOD, which influenced the structure of protein and resulted in a decrease of enzyme activity. This work could help understand the interaction mechanism between SOD and TCS. Moreover, it could also be used to consult for toxicity assessment of TCS at molecular level.

Publisher URL: www.sciencedirect.com/science

DOI: S014765131830068X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.