5 years ago

Differential retention and release of CO2 and CH4 in kerogen nanopores: Implications for gas extraction and carbon sequestration

Differential retention and release of CO2 and CH4 in kerogen nanopores: Implications for gas extraction and carbon sequestration
Methane (CH4) and carbon dioxide (CO2), the two major components generated from kerogen maturation, are stored dominantly in nanometer-sized pores in shale matrix as (1) a compressed gas, (2) an adsorbed surface species and/or (3) a species dissolved in pore water (H2O). In addition, supercritical CO2 has been proposed as a fracturing fluid for simultaneous enhanced oil/gas recovery (EOR) and carbon sequestration. A mechanistic understanding of CH4-CO2-H2O interactions in shale nanopores is critical for designing effective operational processes. Using molecular simulations, we show that kerogen preferentially retains CO2 over CH4 and that the majority of CO2 either generated during kerogen maturation or injected in EOR will remain trapped in the kerogen matrix. The trapped CO2 may be released only if the reservoir pressure drops below the supercritical CO2 pressure. When water is present in the kerogen matrix, it may block CH4 release. However, the addition of CO2 may enhance CH4 release because CO2 can diffuse through water and exchange for adsorbed methane in the kerogen nanopores.

Publisher URL: www.sciencedirect.com/science

DOI: S0016236118301157

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.