3 years ago

Asymmetrically deployed actomyosin-based contractility generates a boundary between developing leg segments in Drosophila

The formation of complex tissues from simple epithelial sheets requires the regional subdivision of the developing tissue. This is initially accomplished by a sequence of gene regulatory hierarchies that set up distinct fates within adjacent territories, and rely on cross-regulatory interactions to do so. However, once adjacent territories are established, cells that confront one another across territorial boundaries must actively participate in maintaining separation from each other. Classically, it was assumed that adhesive differences would be a primary means of sorting cells to their respective territories. Yet it is becoming clear that no single, simple mechanism is at play. In the few instances studied, an emergent theme along developmental boundaries is the generation of asymmetry in cell mechanical properties. The repertoire of ways in which cells might establish and then put mechanical asymmetry to work is not fully appreciated since only a few boundaries have been molecularly studied. Here, we characterize once such boundary in the develop leg epithelium of Drosophila. The region of the pretarsus / tarsus is a known gene expression boundary that also exhibits a lineage restriction (Sakurai et al., 2007). We now show that the interface comprising this boundary is strikingly aligned compared to other cell interfaces across the disk. The boundary also exhibits an asymmetry for both Myosin II accumulation as well as one of its activators, Rho Kinase. Furthermore, the enrichment correlates with increased mechanical tension across that interface, and that tension is Rho Kinase-dependent. Lastly, interfering with actomyosin contractility, either by depletion of myosin heavy chain or expression of a phosphomimetic variant of regulatory light chain causes defects in alignment of the interfaces. These data suggest strongly that mechanical asymmetries are key in establishing and maintaining this developmental boundary.

Publisher URL: www.sciencedirect.com/science

DOI: S0012160617301471

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.