5 years ago

An In Vitro Human Liver Model by iPSC-Derived Parenchymal and Non-parenchymal Cells

An In Vitro Human Liver Model by iPSC-Derived Parenchymal and Non-parenchymal Cells
During liver development, hepatoblasts and liver non-parenchymal cells (NPCs) such as liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs) constitute the liver bud where they proliferate and differentiate. Accordingly, we reasoned that liver NPCs would support the maturation of hepatocytes derived from human induced pluripotent stem cells (hiPSCs), which usually exhibit limited functions. We found that the transforming growth factor β and Rho signaling pathways, respectively, regulated the proliferation and maturation of LSEC and HSC progenitors isolated from mouse fetal livers. Based on these results, we have established culture systems to generate LSECs and HSCs from hiPSCs. These hiPSC-derived NPCs exhibited distinctive phenotypes and promoted self-renewal of hiPSC-derived liver progenitor cells (LPCs) over the long term in the two-dimensional culture system without exogenous cytokines and hepatic maturation of hiPSC-derived LPCs. Thus, a functional human liver model can be constructed in vitro from the LPCs, LSECs, and HSCs derived from hiPSCs.

Graphical abstract



Koui et al. developed efficient methods for generating LSEC and HSC from human iPS cells. These cells exhibit distinctive phenotypes and promote proliferation and differentiation of LPCs. They are useful for generation of functional liver tissue that can be utilized in drug discovery, toxicology, and disease modeling in vitro.

Publisher URL: www.sciencedirect.com/science

DOI: S2213671117302734

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.