3 years ago

Hierarchical Multicomponent Electrode with Interlaced Ni(OH)2 Nanoflakes Wrapped Zinc Cobalt Sulfide Nanotube Arrays for Sustainable High-Performance Supercapacitors

Hierarchical Multicomponent Electrode with Interlaced Ni(OH)2 Nanoflakes Wrapped Zinc Cobalt Sulfide Nanotube Arrays for Sustainable High-Performance Supercapacitors
Baogang Zhu, Xiangkang Meng, Shaochun Tang, Junaid Ali Syed, Jun Ma
High energy density, fast recharging ability, and sustained cycle life are the primary requisite of supercapacitors (SCs); these necessities can be fulfilled by engineering a smart current collector with hierarchical combination of different active materials. This study reports a multicomponent design of hierarchical zinc cobalt sulfide (ZCS) hollow nanotube arrays wrapped with interlaced ultrathin Ni(OH)2 nanoflakes for high-performance electrodes. The ZCS exhibits a unique pentagonal cross-section and a rough surface that facilitates the deposition of Ni(OH)2 nanoflakes with a thickness of 7.5 nm. The ZCS/Ni(OH)2 hierarchical electrode exhibits a high specific capacitance of 2156 F g−1 and excellent cyclic stability with 94% retention over 3000 cycles. This is attributed to enhanced redox reactions, the direct growth of arrays on 3D porous foam acting as a “superhighway” for electron transport, and the increased availability of electrochemical active sites provided by the ultrathin Ni(OH)2 flakes that also sustain the stability of the electrode by sacrificing themselves during long charge/discharge cycles. Symmetric SCs are assembled to achieve high energy density of 74.93 W h kg−1 and exhibit superior cyclic stability of 78% retention with 81% coulombic efficiency over 10 000 cycles. Hierarchical arrays of zinc cobalt sulfide (ZCS) hollow nanotubes exhibiting a well-defined pentagonal cross-section wrapped with interlaced ultrathin (7.5 nm) Ni(OH)2 nanoflakes are synthesized. The well-designed nanoarchitecture allows the ZCS/Ni(OH)2 electrodes to achieve high specific capacitances, good rate capability, and excellent cycling stability. An assembled symmetric supercapacitors (SC) delivers higher energy densities than most of the previously reported asymmetric SCs.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/aenm.201701228

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.