5 years ago

The Knill-Laflamme condition is sufficient for the autonomous protection of logical qudits by strong engineered dissipation.

Jae-Mo Lihm, Uwe R. Fischer, Kyungjoo Noh

Autonomous quantum error correction utilizes the engineered coupling of a quantum system to a dissipative ancilla to protect quantum logical states from decoherence. We show that the Knill-Laflamme condition, stating that the environmental error operators should act trivially on a subspace, which then becomes the code subspace, is sufficient for logical qudits to be protected against Markovian noise. It is proven that the error caused by the total Lindbladian evolution in the code subspace can be suppressed up to very long times in the limit of large engineered dissipation, by explicitly deriving how the error scales with both time and engineered dissipation strength. To demonstrate the potential of our approach for applications, we implement our general theory with binomial codes, a class of bosonic error-correcting code, and outline how they can be implemented in a fully autonomous manner to protect against photon loss and dephasing errors in a microwave cavity.

Publisher URL: http://arxiv.org/abs/1711.02999

DOI: arXiv:1711.02999v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.