Automatic Pavement Crack Detection Based on Structured Prediction with the Convolutional Neural Network.
Automated pavement crack detection is a challenging task that has been researched for decades due to the complicated pavement conditions in real world. In this paper, a supervised method based on deep learning is proposed, which has the capability of dealing with different pavement conditions. Specifically, a convolutional neural network (CNN) is used to learn the structure of the cracks from raw images, without any preprocessing. Small patches are extracted from crack images as inputs to generate a large training database, a CNN is trained and crack detection is modeled as a multi-label classification problem. Typically, crack pixels are much fewer than non-crack pixels. To deal with the problem with severely imbalanced data, a strategy with modifying the ratio of positive to negative samples is proposed. The method is tested on two public databases and compared with five existing methods. Experimental results show that it outperforms the other methods.
Publisher URL: http://arxiv.org/abs/1802.02208
DOI: arXiv:1802.02208v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.