5 years ago

Correlations of occupation numbers in the canonical ensemble and application to BEC in a 1D harmonic trap.

Olivier Giraud, Aurélien Grabsch, Christophe Texier

We study statistical properties of $N$ non-interacting identical bosons or fermions in the canonical ensemble. We derive several general representations for the $p$-point correlation function of occupation numbers $\overline{n_1\cdots n_p}$. We demonstrate that it can be expressed as a ratio of two $p\times p$ determinants involving the (canonical) mean occupations $\overline{n_1}$, ..., $\overline{n_p}$, which can themselves be conveniently expressed in terms of the $k$-body partition functions (with $k\leq N$). We draw some connection with the theory of symmetric functions, and obtain an expression of the correlation function in terms of Schur functions. Our findings are illustrated by revisiting the problem of Bose-Einstein condensation in a 1D harmonic trap, for which we get analytical results. We get the moments of the occupation numbers and the correlation between ground state and excited state occupancies. In the temperature regime dominated by quantum correlations, the distribution of the ground state occupancy is shown to be a truncated Gumbel law. The Gumbel law, describing extreme value statistics, is obtained when the temperature is much smaller than the Bose-Einstein temperature.

Publisher URL: http://arxiv.org/abs/1802.02555

DOI: arXiv:1802.02555v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.