Asymptotically Locally Euclidean/Kaluza-Klein Stationary Vacuum Black Holes in 5 Dimensions.
We produce new examples, both explicit and analytical, of bi-axisymmetric stationary vacuum black holes in 5 dimensions. A novel feature of these solutions is that they are asymptotically locally Euclidean in which spatial cross-sections at infinity have lens space $L(p,q)$ topology, or asymptotically Kaluza-Klein so that spatial cross-sections at infinity are topologically $S^1\times S^2$. These are nondegenerate black holes of cohomogeneity 2, with any number of horizon components, where the horizon cross-section topology is any one of the three admissible types: $S^3$, $S^1\times S^2$, or $L(p,q)$. Uniqueness of these solutions is also established. Our method is to solve the relevant harmonic map problem with prescribed singularities, having target symmetric space $SL(3,\mathbb{R})/SO(3)$. In addition, we analyze the possibility of conical singularities and find a large family for which geometric regularity is guaranteed.
Publisher URL: http://arxiv.org/abs/1802.02457
DOI: arXiv:1802.02457v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.