3 years ago

Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins

Yun-Chiao Yao, Aleksandr Noy, Meni Wanunu, Robert Y. Henley, Tuan Anh Pham, Ramya H. Tunuguntla

Fast water transport through carbon nanotube pores has raised the possibility to use them in the next generation of water treatment technologies. We report that water permeability in 0.8-nanometer-diameter carbon nanotube porins (CNTPs), which confine water down to a single-file chain, exceeds that of biological water transporters and of wider CNT pores by an order of magnitude. Intermolecular hydrogen-bond rearrangement, required for entry into the nanotube, dominates the energy barrier and can be manipulated to enhance water transport rates. CNTPs block anion transport, even at salinities that exceed seawater levels, and their ion selectivity can be tuned to configure them into switchable ionic diodes. These properties make CNTPs a promising material for developing membrane separation technologies.

Publisher URL: http://science.sciencemag.org/cgi/content/short/357/6353/792

DOI: 10.1126/science.aan2438

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.