5 years ago

Predicting Hurricane Trajectories using a Recurrent Neural Network.

Jonathan Beltran, Sheila Alemany, Adrian Perez, Sam Ganzfried

Hurricanes are cyclones circulating about a defined center whose closed wind speeds exceed 75 mph originating over tropical and subtropical waters. At landfall, hurricanes can result in severe disasters. The accuracy of predicting their trajectory paths is critical to reduce economic loss and save human lives. Given the complexity and nonlinearity of weather data, a recurrent neural network (RNN) could be beneficial in modeling hurricane behavior. We propose the application of a fully connected RNN to predict the trajectory of hurricanes. We employed the RNN over a fine grid to reduce typical truncation errors. We utilized their latitude, longitude, wind speed, and pressure publicly provided by the National Hurricane Center (NOAA) to predict the trajectory of a hurricane at 6-hour intervals.

Publisher URL: http://arxiv.org/abs/1802.02548

DOI: arXiv:1802.02548v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.