Magnetic oscillations Excited by Concurrent Spin Injection from a Tunneling Current and a Spin Hall Current.
In this paper, a 3-terminal spin-transfer torque nano-oscillator (STNO) is studied using the concurrent spin injection of a spin-polarized tunneling current and a spin Hall current exciting the free layer into dynamic regimes beyond what is achieved by each individual mechanism. The pure spin injection is capable of inducing oscillations in the absence of charge currents effectively reducing the critical tunneling current to zero. This reduction of the critical charge currents can improve the endurance of both STNOs and non-volatile magnetic memories (MRAM) devices. It is shown that the system response can be described in terms of an injected spin current density $J_s$ which results from the contribution of both spin injection mechanisms, with the tunneling current polarization $p$ and the spin Hall angle $\theta$ acting as key parameters determining the efficiency of each injection mechanism. The experimental data exhibits an excellent agreement with this model which can be used to quantitatively predict the critical points ($J_s = -2.26\pm 0.09 \times 10^9 \hbar/e$ A/m$^2$) and the oscillation amplitude as a function of the input currents. In addition, the fitting of the data also allows an independent confirmation of the values estimated for the spin Hall angle and tunneling current polarization as well as the extraction of the damping $\alpha = 0.01$ and non-linear damping $Q = 3.8\pm 0.3$ parameters.
Publisher URL: http://arxiv.org/abs/1802.02224
DOI: arXiv:1802.02224v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.