5 years ago

Theory of Finite-Length Grain Boundaries of Controlled Misfit Angle in Two-Dimensional Materials

Theory of Finite-Length Grain Boundaries of Controlled Misfit Angle in Two-Dimensional Materials
Yuanxi Wang, Vincent H. Crespi
Grain boundaries in two-dimensional crystals are usually thought to separate distinct crystallites and as such they must either form closed loops or terminate at the boundary of a sample. However, when an atomically thin two-dimensional crystal grows on a substrate of nonzero Gaussian curvature, it can develop finite-length grain boundaries that terminate abruptly within a monocrystalline domain. We show that by properly designing the substrate topography, these grain boundaries can be placed at desired locations and at specified misfit angles, as the thermodynamic ground state of a two-dimensional (2D) system bound to a substrate. Compared against the hypothetical competition of growing defectless 2D materials on a Gaussian-curved substrate with consequential fold development or detachment from the substrate, the nucleation and formation of finite-length grain boundaries can be made energetically favorably given sufficient substrate adhesion on the order of tens of meV/Å2 for typical 2D materials. New properties specific to certain grain boundary geometries, including magnetism and metallicity, can thus be engineered into 2D crystals through topographic design of their substrates.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b01641

DOI: 10.1021/acs.nanolett.7b01641

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.