5 years ago

Depletion of amyloid-β peptides from solution by sequestration within fibril-seeded hydrogels

Wai-Ming Yau, Robert Tycko
Aggregation of amyloid-β (Aβ) peptides in brain tissue leads to neurodegeneration in Alzheimer's disease (AD). Regardless of the kinetics or detailed mechanisms of Aβ aggregation, aggregation can only occur if Aβ concentrations exceed their local equilibrium solubility values. We propose that excess Aβ peptides can be removed from supersaturated solutions, including solutions in biological fluids, by the addition of hydrogels that are seeded with Aβ fibril fragments. Fibril growth within the hydrogels then sequesters excess peptides until equilibrium concentrations are reached. Experiments with 40-residue and 42-residue Aβ peptides (Aβ40 and Aβ42) in phosphate buffer at 24°C and in filtered fetal bovine serum at 37°C, using cross-linked polyacrylamide hydrogels, demonstrate the validity of this concept. Aβ sequestration in fibril-seeded hydrogels (or other porous media) may prove to be a useful technique in experiments with animal models of AD and may represent a possible approach to preventing or slowing the progression of AD in humans. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/pro.3387

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.