3 years ago

Initial-Stage Oxidation of Ni3Al(100) and -(110) from Ab Initio Thermodynamics

Initial-Stage Oxidation of Ni3Al(100) and -(110) from Ab Initio Thermodynamics
Guangwen Zhou, Canying Cai, Likun Wang, Yichun Zhou
The microscopic mechanisms of the initial-stage oxidation of the Ni3Al(100) and Ni3Al(110) surfaces are comparatively studied using ab initio calculations based on density-functional theory and thermodynamics considerations. The surface energies of the two surfaces as functions of aluminum and oxygen chemical potentials are constructed and show that the formation of any antisite defects is not favorable at the Ni3Al(100) surface, whereas Al antisite defects are favorable at the Ni3Al(110) surface. The surface phase diagrams of the Ni3Al(100) and -(110) surfaces with different antisite defects and at the various oxygen coverages are determined. These results show that oxygen adsorption enhances Al surface segregation at the initial stage of oxidation for both surfaces and that the Ni3Al(100) surface is thermodynamically more favored to oxidize completely at a lower oxygen coverage than the Ni3Al(110) surface.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b04674

DOI: 10.1021/acs.jpcc.7b04674

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.