5 years ago

Two Distinctly Separated Emission Colorimetric NIR Fluorescent Probe for Fast Hydrazine Detection in Living Cells and Mice upon Independent Excitations

Two Distinctly Separated Emission Colorimetric NIR Fluorescent Probe for Fast Hydrazine Detection in Living Cells and Mice upon Independent Excitations
Xiaomin Shi, Zhengliang Lu, Yanan Lu, Wenlong Fan, Chunhua Fan
Hydrazine is carcinogenic and highly toxic so that it can lead to serious environmental contamination and serious health risks although it has been extensively used as an effective propellant and an important reactive base in industry. Thus, the development of two-emission NIR fluorescent probes for rapid detection of hydrazine with high selectivity and sensitivity is of significance and of great challenge in both biological and environmental sciences. Here, we report a two-emission colorimetric fluorescent probe for the specific detection of hydrazine based on hydrazinolysis reaction under physiological conditions. In the presence of hydrazine, the probe showed an extremely remarkable fluorescence enhancement at 627 nm compared to the decrease at 814 nm excited at different wavelength in aqueous solution. This distinct difference of two emission intensities is suitable for detection of low concentration hydrazine with a detection limit of 0.38 ppb. Addition of hydrazine resulted in a remarkable color change from blue-green to red observed by the naked eye. Kinetic study indicated a fast response of the probe toward hydrazine in minutes. Furthermore, the probe can bioimage hydrazine in living HeLa cells and mice with low cytotoxicity and excellent biocompatibility.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02149

DOI: 10.1021/acs.analchem.7b02149

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.