5 years ago

Photogenerated Carriers Boost Water Splitting Activity over Transition-Metal/Semiconducting Metal Oxide Bifunctional Electrocatalysts

Photogenerated Carriers Boost Water Splitting Activity over Transition-Metal/Semiconducting Metal Oxide Bifunctional Electrocatalysts
Bin Zhang, Dali Liu, Yifu Yu, Yi Huang, Xiling Han
The development of a facile and general strategy to simultaneously enhance the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities of bifunctional electrocatalysts is of great importance for practical applications. However, current strategies are usually restricted to monofunctional electrocatalysts owing to the opposite redox process at cathode and anode. Herein, we present a photogenerated-carrier-driven strategy to enhance the electrocatalytic HER and OER activities of transition-metal/semiconductor bifunctional electrocatalysts. The Ni/NiO heterostructured ultrathin nanosheet array supported on Ni foam (denoted as Ni/NiO-NF) is chosen as the model metal/semiconductor bifunctional electrocatalyst and exhibits 10- and 2.6-fold enhancement of mass activity for HER and OER, respectively, after exposure to light irradiation. The increase in water-splitting activities can be attributed to the transfer of photogenerated electrons from excited NiO to HER-active Ni and the accelerating formation of OER-active NiIII/IV, respectively.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b01823

DOI: 10.1021/acscatal.7b01823

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.