Groundwater depletion limits the scope for adaptation to increased rainfall variability in India
Abstract
Recent studies have found that increasing intra-seasonal precipitation variability will lead to substantial reductions in rice production in India by 2050, independently of the effect of rising temperatures. However, these projections do not account for the possibility of adaptations, of which the expansion of irrigation is the primary candidate. Using historical data on irrigation, rice yields, and precipitation, I show that irrigated locations experience much lower damages from increasing precipitation variability, suggesting that the expansion of irrigation could protect Indian agriculture from this future threat. However, accounting for physical water availability shows that under current irrigation practices, sustainable use of irrigation water can mitigate less than a tenth of the climate change impact. Moreover, if India continues to deplete its groundwater resources, the impacts of increased variability are likely to increase by half.
Publisher URL: https://link.springer.com/article/10.1007/s10584-018-2146-x
DOI: 10.1007/s10584-018-2146-x
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.